[PDF] Java Software Solutions: Foundations
Of Program Design, Update, JavaPlace
Edition (2nd Edition)

John Lewis, William Loftus - pdf download free book

Books Details:

Title: Jawa Software Solutions: Foun
Author: Jobn Lewis, William Loftus
Released: Z002-01-15

Language:

Pagez: 754

ISEM: 0201750525

ISEM1S: 975-0201750522

ASIN: 0201750525

JORN LERIS | WILLIAN LOFTUS

CLICK HERE FOR DOWNLOAD

pdf, mobi, epub, azw, kindle

Description:

From the Inside Flap We have designed this text for use in a first course in programming using the
Java language. It serves as an introduction to computer science and forms a foundation for pursuing
advanced computing topics. Our goal is to make students comfortable with object-oriented concepts


http://red.wutf.space/books3/?pid=1737527502&d=20-10-06&dm=null

so that they will be well-prepared to design and implement high-quality object-oriented software.

This text was formed out of our combined experiences with real-world programming and classroom
teaching of Java. We have written this text from the ground-up with an object-oriented Java approach
always in mind. When Java first emerged in mid-1995, most of the attention was focused on its
applets and glitzy web effects. Over time, people have come to realize its larger benefits as a
powerful object-oriented language that is well-designed and pedagogically sound. We have
discovered that students respond better, faster, and more enthusiastically to computing concepts
when they are explained through Java.

Due to a strong interest in this text from its inception, it was first published in a preliminary version.
We have made several improvements to the text since then, including rearranging topics to provide
maximum versatility, and adding more examples to help students better grasp important concepts.
This edition has also been updated to fully embrace Java 1.1. This new version of Java provides many
improvements over the earlier version, including a significant improvement to the GUI event model.

Object-Oriented Coverage

We introduce objects early in the text and consistently reinforce their use throughout. We have
found that students find object-oriented concepts highly intuitive if presented to them in a clear,
careful way. Introductory programmers can successfully master concepts like inheritance and
polymorphism if they are presented in a straightforward and thorough manner.

The term object-oriented software development implies that the approach is oriented around objects,
yet some people advocate postponing the introduction of objects until after many traditional
procedural techniques are covered. Our view is that as soon as a design gets sophisticated enough to
deserve multiple methods, it should use objects with methods in them. Methods should never be
taught independent of their role in an object. We believe that educating students in object-oriented
design will prepare them to be better programmers independent of the language used.

GUI Coverage

We have experimented with a variety of approaches and have concluded that our students should
not be asked to develop graphical user interfaces in Java too early. Introducing GUIs prior to a
thorough coverage of classes, interfaces, and inheritance requires too many vague and misleading
side discussions. We still cover applets, graphics, and animation early, but defer event-based
interaction until suitable foundation material has been established.

The four cornerstones of the text
This text is based upon four basic ideas that we believe make for a sound introductory text.

True object-orientation. A true object-oriented text must do more than mention objects early. In this
text, every situation and example reinforces the design principles of object-oriented programming.
We establish as a fundamental guideline that the class that contains the main method should contain
no additional methods; if other functionality is needed, it is provided through other classes and
objects. This guideline is applied in all programs as soon as objects are introduced (see the

CD Collection example in Chapter 4).

Sound software engineering. Students should be exposed to software engineering principles early in
order to be prepared to develop high-quality software in the future. Software engineering concepts
are integrated throughout the text and constantly reinforced so that students learn their importance
from the start. For example, design and process issues are introduced in Chapter 3 and revisited in



examples throughout the text. Furthermore, Chapters 11 and 15 are devoted to software
engineering issues.

Integrated graphics. Modern software systems are graphical. Introductory programming courses
should cover graphics and graphical user interfaces. Various examples in this text, as early as the
No Parking applet in Chapter 2, use graphics to motivate and engage students. Furthermore, we
devote Chapter 7 to a complete investigation of basic Java graphics and Chapter 10 to GUIs and
related topics. We introduce GUIs carefully, after students can appreciate the concepts of event-
driven programming.

Balanced examples. A text must contain a strong balance of smaller and larger examples. Smaller
examples establish a foundation for students, while larger examples provide them with a more
realistic context. We have intertwined small, readily understandable examples with larger, practical
ones to give students and faculty a variety of examples to explore. We also balance the use of
applications and applets throughout the text in order to give students a strong foundation in both
approaches.

Paths through the text

This book is designed to be flexible, so that professors can tailor its presentation to the needs of
their students. Professors can take a variety of different paths through the text, organized around
four major topics: object-oriented development, graphics and GUIs, software engineering, and Java
language features. The initial chapters should be covered in the designated order, as they form the
foundation on which to explore these topics.

Chapter 1 (Computer Systems) presents a broad overview of computing topics. It establishes some
terminology concerning hardware, networks, and the World-Wide Web. Depending on the
background of the student, it can be covered quickly or left for outside reading. Chapter 2 (Software
Concepts) begins the exploration of software development and introduces the concepts underlying
the object-oriented approach. Students with previous software development exposure may only need
to focus on portions of Chapter 2 as needed. Chapter 3 (Program Elements) provides just enough
low-level detail, including basic control flow, in order to make the exploration of objects concrete.

Chapter 4 (Objects and Classes) is the springboard for the rest of the book. It describes how to
define objects using classes and the methods and data that they contain. At this point the instructor
has wide latitude in choosing the topics that will follow. Chapter 5 (More Programming Constructs)
can be covered immediately to fill in additional low-level details, or can be deferred to a later point.
A more traditional course flow might also include Chapter 6 (Objects for Organizing Data) with its
emphasis on arrays.

The remaining chapters can be organized in a variety of different ways based upon the needs of the
instructor. Those instructors who want to emphasize object-oriented development can follow
Chapter 4 with Chapter 8 (Inheritance) and Chapter 9 (Enhanced Class Design). The object-oriented
issues should be covered prior to introducing the graphical user interface material in Chapter 10,
although the basic graphics content of Chapter 7 can be covered any time after Chapter 4. A
software engineering track can be followed by covering Chapters 11 and 15 (Software Development
Process I and II) after the object-oriented material. To emphasize the Java language features,
instructors can follow chapters 4, 5, and 6 with Chapters 8, 9, and 14 (Advanced Flow of Control).
We invite instructors to experiment with the ordering of chapters to best meet the needs of their
course.

Pedagogical features



This text contains numerous pedagogical features that help make the material more accessible to
students. Some of the features we use are listed below:

Key Concepts. The Key Concept designation is used throughout the book to draw special attention to
fundamental ideas and important design guidelines.

In-depth Focus Boxes. These boxes appear in several places throughout the text and provide a tiered
coverage of material. They allow more advanced students to challenge their knowledge of the
subject without overwhelming others. Instructors may choose to cover or skip this feature without
any loss of continuity.

Code Callouts. Blue type is used to call out and annotate important parts of the code. The second
color allows students to better understand the code as they read through it.

Problem Sets. Each chapter of the book concludes with a set of problems, separated into three
categories:

Self-Review Questions and Answers. These short-answer questions review the fundamental ideas and
terms established in the chapter. They are designed to allow students to assess their own basic
grasp of the material. The answers to these questions can be found at the end of the problem sets.

Exercises. These intermediate problems probe the underlying issues discussed in the chapter and
integrate them with concepts covered in previous chapters. While they may deal with code, they do
not involve any on-line activity.

Programming Projects. These consist of more involved problems that require design and
implementation of Java programs. The projects vary widely in level of difficulty.

Java Reference Material. The appendices contain a significant amount of language reference
material. We have placed this material in appendices so that more of the text can focus on the
important software concepts. Students can reference these appendices as needed throughout the
course to learn more details of the Java language.

Java Style Guidelines. Appendix G contains a proposed set of programming style guidelines. These
guidelines are followed in the examples throughout the text.

Graphical Design Notation. The object-oriented designs in the text are presented with a simple
graphical notation. This allows students to read and use a design notation similar to professional
development models.

Conventions

We use various conventions for indicating different types of material in the text. Important words
and phrases are emphasized in italics on their first use. Code is presented in a mono-spaced font:

void cube (int num) {
System.out.println ("The cube is " + (num*num*num)); } // method cube

and code elements such as cube, maintain the code font in the text. Output is presented in a mono-
spaced font surrounded by a colored box:

The cube is 9



In the sample run of a program, user input is shown in color:

> java Average Enter a number (-1 to quit): 90 Enter a number (-1 to quit): 80 Enter a number (-1 to
quit): 70 Enter a number (-1 to quit): -1 The average is 80

Pseudocode is presented in a script font:

prompt for and read the grade while (grade does not equal -1) { increment count sum = sum +
grade; prompt for another grade read next grade } average = sum / count; print average

Supplements

This book comes with a large variety of supplemental materials to assist in course preparation and
execution. Links to all of the supplements can be found on the book's official web site. In addition to
the supplements listed below, this site contains all examples from the book and additional Java
examples not found in the book.

Instructor's Manual. A manual has been created to assist professors in course preparation. It
contains strategy suggestions for presenting material, answers to text exercises, solutions to
selected programming projects, and a collection of potential test questions and answers. To obtain a
copy of the Instructor's Manual, please contact your local Addison-Wesley sales representative.

Laboratory Manual. A series of independent exercises support curricula which use a closed lab
approach. Instructors can choose from a variety of labs, covering material found in each chapter of
the text. The labs overlap to reflect the various different ways that an instructor can approach the
book. In addition to use in the laboratory environment, the lab exercises may also be assigned as
outside work.

Integrated Web Presentation. These web pages allow an instructor to interactively present course
notes, examples, and executable code entirely through a web browser. At the instructor's discretion,
the material can then be made available to students for further review at their own pace.

Transparency Masters. Overhead slides are available for those who choose not to use the Integrated
Web Presentation. Slides may be obtained in either Microsoft PowerPoint format or Postscript.

Acknowledgments

The creation of this text was an effort that extends well beyond the authors. If we have succeeded in
our goals, it is largely due to the support we received from many sources.

First of all, we greatly appreciate the students who have participated in the courses in which
preliminary versions of this text were used. Their feedback and suggestions have been quite helpful
in the process of refining the book's content and presentation.

Lynne Doran-Cote and Debbie Lafferty at Addison-Wesley have been outstanding in their editorial
support and encouragement. Amy Willcutt was amazingly helpful and accommodating during the
final production of the text, with the support of Karen Wernholm. Tom Ziokowski, Michael Hirsch,
and Stacy Treco provided important insight and direction. Roberta (Bobbi) Lewis was a pleasant and
meticulous copy editor. We appreciate their support of our vision for this book and their desire for
quality above all else.

Many thanks go to our reviewers, listed below, who provided important, constructive comments and
suggestions. They found numerous ways to improve the quality of the text and were never shy about



expressing their opinion. Any errors that still exist in the book are solely the responsibility of the
authors, as we can never seem to stop making changes.

Christopher HaynesIndiana University

Lawrence OsborneLamar University B. RavikumarUniversity of Rhode Island David RileyUniversity
of Wisconsin, LaCrosse Vijay SrinivasanJavaSoft, Sun Microsystems Inc. Shengru TuUniversity of
New Orleans John J. WegisJavaSoft, Sun Microsystems Inc. David WittenbergBrandeis University

Thanks also go to the many informal reviewers who have provided valuable feedback. Chief among
them is Dan Joyce of Villanova University, who was instrumental in helping us revise our initial
approach and who provided guidance through multiple revisions. Paul Gormley also provided
significant and helpful comments on the content of the text.

Special thanks go to Pete DePasquale at Villanova University. He has been a tremendous help in
many areas, including the development of Appendix O, the creation of exercises, and overall review.
His assistance has been invaluable.

Many other people have helped in various ways. They include Ken Arnold, Bob Beck, Alan Dellinger,
Tom DiSessa, Dan Hardt, John Loftus, Bob Pollack, Tim Ryan, Brent Schwartz, Ken Slonneger, Joe
Tursi, and Mahesh Vanavada. Our apologies to anyone we may have forgotten.

The ACM Special Interest Group on Computer Science Education (SIGCSE) is a tremendous
resource. Their conferences provide an opportunity for educators from all levels and all types of
schools to share ideas and materials. If you are an educator in any area of computing and are not
involved with SIGCSE, you're missing out.

The faculty in the Department of Computing Sciences at Villanova University and the staff at WPL
Laboratories, Inc. have supported us both throughout this process. It is greatly appreciated.

Thanks also go to the following: Sun Microsystems (the network is the computer), FedEx (it often
had to be there overnight), WaWa (open 24 hours, including holidays), Dominos (they deliver), Diet
Coke (just for the taste of it), New Orleans (especially the House of Blues), sleep (we've read about
this), coffee (the elixir of life), Altoids (curiously strong), a helpful student (for the goat), and the
couch of science (the seat of inspiration).

Most importantly, thanks go to our wives. John thanks his wife Sharon for her love and
understanding throughout this project, and for distracting him when he needed it. Bill thanks his
wife Veena, for her undying love and support, his son Isaac, for his inspirational story "The Golden
Mask," and his daughter Devi, for teaching him how to dress. --This text refers to an alternate
edition.

From the Back Cover

Embracing in full the new features of the Java 2 platform as they apply to CS1/Introductory
Programming topics, the second edition of this leading textbook continues to teach beginning
programmers how to design and implement high-quality object-oriented software. A new chapter,
"Exceptions and I/O Streams" (Chapter 8), has been added, which explains the Keyboard class used
in the text and explores other I/O issues such as files, network communication, and object
serialization.

Applets and applications are intertwined throughout the book to demonstrate computing concepts.
Applets, introduced in Chapter 2, build on the excitement of the Web, while applications allow



students to gain a clear understanding of programming concepts.

John Lewis and William Loftus have expanded their coverage of lasses and objects with this edition
to provide more in-depth discussion of methods and parameter passing, object relationships, and
class design. Discussion of Swing components is also new to this edition, as is the inclusion of new
Collection classes. FEATURES

* Provides an object-oriented approach to Introductory Programming (Chapters 2 and 3 introduce
object concepts; Chapter 4 and beyond show how to design and implement classes)

* New chapter on I/O familiarizes students with the different facets of user interaction

* The new, optional Graphics Track throughout the text reinforces the primary themes of each
chapter by using graphical examples and discussing new graphics material

* New syntax boxes highlight Java language elements with syntax diagrams, short descriptions, and
concise examples

* Web Bonus sections highlight extra information about various CS1 topics that can be found on the
World Wide Web

* NEWNow includes a CD-ROM containing Java development tools, as well as source code and
PowerPoint slides from the text

« Title: Java Software Solutions: Foundations of Program Design, Update, JavaPlace Edition (2nd
Edition)

e Author: John Lewis, William Loftus

Released: 2002-01-15

Language:

Pages: 784

ISBN: 020175052X

ISBN13: 978-0201750522

e ASIN: 020175052X




